วันพุธที่ 16 กุมภาพันธ์ พ.ศ. 2554

Casino games and mathematics Part 3

  After one more year Thorp published a GClub book (I mentioned it at the beginning of the article) in which he rather in details, in the form comprehensible to any even a slightly literate and sensible person, set the rules of formation of a winning strategy.

  But the publication of the book did not only cause a quick growth of those willing to enrich themselves at the cost of gambling houses' owners, as well as allowed the latter ones to understand the main reason of effectiveness of the developed by Thorp strategy.

  First of all, casinos' owners understood at last that it was necessary to introduce the following obligatory point into the rules of the game: cards are to be thoroughly shuffled after each game! If this rule is rigorously observed, then a winning strategy of Thorp cannot be applied, since the calculation of probabilities of extracting one or another card from a pack was based on the knowledge of the fact that some cards would already not appear in the game!

  But what does it mean to have "thoroughly shuffled" cards? Usually in gambling houses the process of "thoroughly shuffling" presupposes the process when a croupier, one of the gamblers or, that is still oftener seen of late, a special automatic device makes a certain number of more or less monotonous movements with a pack (the number of which varies from 10 to 20-25, as a rule).

  Each of these movements changes the arrangement of cards in a pack. As mathematicians say, as a result of each movement with cards a kind of "substitution" is made. But is it really so that as a result of such 10-25 movements a pack is thoroughly shuffled, and in particular, if there are 52 cards in a pack then a probability of the fact that, for instance, an upper card will appear to be a queen will be equal to 1/13? In other words, if we will, thus, for example, shuffle cards 130 times, then the quality of our shuffling will turn out to be more "thorough" if the number of times of the queen's appearance on top out of these 130 times will be closer to 10.

  Strictly mathematically it is possible to prove royal1688 casino that in case our movements appear to be exactly similar (monotonous) then such a method of shuffling cards is not satisfactory. At this it is still worse if the so called "order of substitution" is less, i.e. less is the number of these movements (substitutions) after which the cards are located in the same order they were from the start of a pack shuffling.

  In fact, if this number equals to t, then repeating exactly similar movements any number of times we, for all our wish, can not get more t different positioning of cards in a pack, or, using mathematical terms, not more t different combinations of cards.